Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38547756

RESUMEN

Black porgy (Acanthopagrus schlegelii) is an important marine aquaculture species in China. It is an ideal object for the cultivation of low-salinity aquaculture strains in marine fish and the study of salinity tolerance mechanisms in fish because of its strong low-salinity tolerance ability. Gill is the main osmoregulatory organ in fish, and the liver plays an important role in the adaptation of the organism to stressful environments. In order to understand the coping mechanisms of the gills and livers of black porgy in different salinity environments, this study explored these organs after 30 days of culture in hypoosmotic (0.5 ppt), isosmotic (12 ppt), and normal seawater (28 ppt) at histologic, physiologic, and transcriptomic levels. The findings indicated that gill exhibited a higher number of differentially expressed genes than the liver, emphasizing the gill's heightened sensitivity to salinity changes. Protein interaction networks and enrichment analyses highlighted energy metabolism as a key regulatory focus at both 0.5 ppt and 12 ppt salinity in gills. Additionally, gills showed enrichment in ions, substance transport, and other metabolic pathways, suggesting a more direct regulatory response to salinity stress. The liver's regulatory patterns at different salinities exhibited significant distinctions, with pathways and genes related to metabolism, immunity, and antioxidants predominantly activated at 0.5 ppt, and molecular processes linked to cell proliferation taking precedence at 12 ppt salinity. Furthermore, the study revealed a reduction in the volume of the interlamellar cell mass (ILCM) of the gills, enhancing the contact area of the gill lamellae with water. At 0.5 ppt salinity, hepatic antioxidant enzyme activity increased, accompanied by oxidative stress damage. Conversely, at 12 ppt salinity, gill NKA activity significantly decreased without notable changes in liver structure. These results underscore the profound impact of salinity on gill structure and function, highlighting the crucial role of the liver in adapting to salinity environments.

2.
Mar Pollut Bull ; 190: 114831, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36944286

RESUMEN

The cuttlefish (Sepiella inermis) is an economically important species in the coastal seas of China. The impacts of ocean acidification on the ability of juvenile cuttlefish to select a suitable habitat, its hunting and swimming behavior, remains unknown. We examined behavior-related responses and the eye and cuttlebone structure of juvenile cuttlefish following short-term exposure to CO2-enriched seawater. The predation success rate decreased with the elevation in CO2 concentration. In the CO2 treatment groups, cuttlefish spent more time in the dark zone and the average swimming speed and total swimming distance significantly decreased. The structure of the retina and cuttlebone was affected by seawater acidification. Moreover, apoptotic cells were significantly increased in the eyes. In the wild, the impairment of the eye and cuttlebone may decrease the predation ability of juvenile cuttlefish and negatively affect their ability to select a suitable habitat, which would be detrimental to its population.


Asunto(s)
Decapodiformes , Agua de Mar , Animales , Decapodiformes/química , Agua de Mar/química , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Dióxido de Carbono/análisis , Océanos y Mares
3.
Sci Total Environ ; 720: 137279, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32145610

RESUMEN

Altered behaviors have been reported in many marine fish following exposure to high CO2 concentrations. However, the mechanistic link between elevated CO2 and activation of brain regions in fish is unknown. Herein, we examined the relative quantification and location of c-Fos expression in marine medaka following acute (360 min) and short-term (7 d) exposure to CO2-enriched water (1000 ppm and 1800 ppm CO2). In the control and two treatment groups, pH was stable at 8.21, 7.92 and 7.64, respectively. After acute exposure to seawater acidified by enrichment with CO2, there was a clear upregulation of c-Fos protein in the medaka brain (P < 0.05). c-Fos protein expression peaked after 120 min exposure in the two treatment groups and thereafter began to decline. There were marked increases in c-Fos-labeling in the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata. After 1800 ppm CO2 exposure for 7 d, medaka showed significant preference for dark zones during the initial 2 min period. c-Fos protein expression in the ventricular and periventricular zones of the diencephalon in medaka exposed to 1000 ppm and 1800 ppm CO2 were 0.51 ± 0.10 and 1.34 ± 0.30, respectively, which were significantly higher than controls (P < 0.05). Highest doublecortin protein expression occurred in theventricular zones of the diencephalon and mesencephalon. These findings suggest that the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata of marine medaka are involved in rapid acid-base regulation. Prolonged ocean acidification may induce cell mitosis and differentiation in the adult medaka brain.


Asunto(s)
Oryzias , Animales , Encéfalo , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Agua de Mar , Contaminantes Químicos del Agua
4.
Opt Lett ; 43(16): 3838-3841, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30106896

RESUMEN

A continuous-wave-operation laser amplifier chain consisting of three multi-concentration-doped Yb:YAG slab gain modules (GMs) at room temperature is presented. The output power of 22.3 kW with the beam quality of 3.3 times the diffraction limit is achieved from this chain. To the best of our knowledge, based on a Yb:YAG slab at room temperature, the highest power to date while maintaining excellent beam quality laser output. An extraction efficiency of 36% from the single slab GM is obtained and can be further enhanced to 46% by optimizing the parameters of GM. These results have confirmed that the Yb:YAG slab has an excellent scaling performance and is suitable for the development of high-average-power lasers.

5.
Opt Express ; 26(11): 14592-14600, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29877493

RESUMEN

We demonstrate a master oscillator power amplifier (MOPA) architecture based on Yb:YAG amplifiers and adaptive optics (AO) systems with a high power and high beam quality laser output. With two conduction cooled, dual-end-pumped Yb:YAG zigzag-slab amplifiers at room temperature, the fiber laser of 300 W was scaled to 11.9 kW. Moreover, AO system positioned downstream was utilized to correct wavefront of amplified laser. The beam quality ß at maximum output power was 2.8 times diffraction limited with closed-loop AO system.

6.
Opt Lett ; 42(16): 3149-3152, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28809895

RESUMEN

In this Letter, we report a 1064 nm continuous wave Nd:YAG planar waveguide laser with an output power of 1544 W based on the structure of the master oscillator power amplification. A fiber laser is used as the master oscillator, and diode laser arrays are used as the pump source of the waveguide laser amplifier. The dimension of the waveguide is 1 mm (T)×10 mm (W)×60 mm (L), and the dual end oblique pumping is adopted with different angles. After a single-pass amplification, the power is scaled from 323 to 1544 W with the pump power of 2480 W, leading to an optical-to-optical efficiency of 49%. At the maximum output, the beam quality M2 are measured to be 2.8 and 7.0 in the guided direction and the unguided direction, respectively. To the best of our knowledge, this is the highest output power of a Nd:YAG planar waveguide laser to date.

7.
Opt Express ; 24(21): 24517-24523, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828179

RESUMEN

We demonstrate a high-efficiency, high-average-power, CW master oscillator power amplifier based on a conduction-cooled, end-pumped Yb:YAG slab architecture at room temperature (RT). Firstly, the CW amplification property is theoretically analyzed based on the kinetics model for Yb:YAG. To realize high-efficiency laser amplification extraction for RT Yb:YAG, not only intense pump but also a high-power seed laser is of great importance. Experimentally, a composite Yb:YAG crystal slab with three doped and two un-doped segments symmetrically is employed as the gain medium, which is end-pumped by two high-power, 940-nm diode lasers. A high-power, narrow-spectral-width, 1030-nm fiber seed laser then double passes the composite slab to realize efficient power amplification. For 0.8-kW seed input, maximum output power of 3.54 kW is obtained at 6.7 kW of pump power, with the optical conversion efficiency of 41% and the highest slope efficiency of 59%. To the best of our knowledge, this is the highest power and efficiency reported for Yb:YAG lasing at RT except thin-disk lasers.

8.
Opt Lett ; 41(7): 1608-11, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27192299

RESUMEN

This Letter presents a high-efficiency optical parametric amplifier pumped by a high-power slab laser with approximate uniform rectangular distribution. By optimizing the overlapping, spectrum matching, and pulse synchronization for the pump and signal lasers, output power of 110.8 W at 1678 nm with corresponding conversion efficiency of 32.3% was achieved in addition to sufficient usage of the effective area in MgO doped periodically poled lithium niobate crystal. It could also provide a designable and tunable wavelength of the amplified laser in a wide infrared region.

9.
Appl Opt ; 54(10): 2693-702, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25967178

RESUMEN

Ray tracing is performed to investigate the optical distortions in the end-pumped, zigzag slab. Optical path differences caused by temperature, slab deformation, and stress birefringence are calculated under uniform pumping; the results show a steep edge in the width dimension and a thermal lens with an effective focal length as short as several meters in the thickness dimension. Dependence of depolarization on total internal reflection phase retardance as well as the slab's cut angle is studied by the Jones matrix technique; results show that although at the pumping power of 10 kW, the mean depolarization of the 2.5 mm×30 mm×150.2 mm Nd:YAG slab is generally below 3%, and it increases rapidly with pumping power. Besides, for the 0°- or 60°-cut slab, an optimal phase retardance range of 5° to 13° exists, in which the depolarization loss can be lower than 0.5%. Finally, experiments on temperature and depolarization measurements verify the numerical results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...